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CALCULATION OF INITIAL STAGE OF HEATING A PLANAR BODY WITH 

VARIABLE PROPERTIES 

Yu. V. Vidin UDC 536.244 

A method is presented for calculation of upper and lower limits of the tempera- 
ture field of a planar body with temperature-dependent thermophysical properties. 

In the initial stage of heating, a planar body can be considered as semiinfinite. The 
differential transfer equation with consideration of temperature dependence of the thermal 
conductivity and specific heat can then be written in the form 

d [f~(O)d~@ ] dO =0 ,  (i) 
dq -t- 2q[2 (@) dn 

where n = /X=/aoT/2 is the Boltzmann variable, and fl (0) and f2(O) are positive functions 
which do not go to zero over the range of 0 from 0 to !. We supplement Eq. (i) by the 
boundary conditions 

O = O  ~r ~ = 0 ,  (2) 

O =  1 ~r ~--,,-co. (3) 

In the general case Eq. (i) is nonlinear, so achievement of an analytical solution is dif- 
ficult. 

To study the problem presented by Eqs. (1)-(3), we will use the approach proposed in 
[I, 2], which considered nonstationary thermal conductivity of bodies with nonlinear boundary 
conditions. Following [i, 2], we will find upper and lower limits for the unknown tempera- 
ture field @. This method is applicable in engineering practice when the "gap" between the 
limiting functions is relatively small and the equations involved are relatively simple. 

We will now demonstrate the application of this principle to Eqs. (1)-(3). 

Introducing the Kirchhoff substitution 
@ I 

U = .I ft (@) dO / S [' (@) d@, (4) 
0 0 

we transform Eqs. (1)-(3) to the form 

d2U @ 2~] [2(0) dU _ O, (5) 
d~] 2 [i (6)) d~] 

U = O  for ~1=0, (6) 

U :  1 for ~1--+oo. (7) 
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Without limiting the generality of the method, we will consider a special case of Eqs. (5)- 
(7), viz.: f~(O) = I + Be and f2(O) = i, which demonstrates the peculiarities of the solu- 
tion more clearly. 

If the parameter 8 > O, then the lower limit for the temperature field can be estab- 
lished by integration of the linear equation 

d2Umin ~_ 2_____~ dgml n 0. (8) 
d~ z 1-]-~ d~ 

Solving Eq. (8) with conditions (6), (7), we have [3] 

Umin = err (9) 

where Umi n = (Omin +(B/2)@~in)/(l + ~/2). 

The function Omi n = Omin(~) found in this manner serves as the basis for calculation 
of an upper temperature limit. Now we must integrate the equation 

d2Umax ~ 2~ dUma--x: O. (i0) 

d~ z 1 -@ ~Omin dB 
However, in view of the mathematical complexity of the expression 2n/[l + BOmin(~)] , it is 
difficult to obtain a convenient engineering solution directly from Eq. (lO). Therefore, in 
place of Eq. (i0) we introduce the expression 

( 2~ ) dUmax d2Um"~ + a +  - - = 0 .  (11) 
d~ 2 1 -}- ~ d~ 

where a is a constant subject to determination. We note especially that the condition 

k 1 + ~ 1 @ ~Omin(n) (12) 

must be s a t i s f i e d  over  the  e n t i r e  range of ~ (from 0 t o o  o) .  The c o e f f i c i e n t  a can be d e t e r -  
mined most s imply by a g r a p h i c a l  method,  u s ing  the  c o n s t r u c t i o n  shown in  F ig .  1. 

I n t e g r a t i n g  Eq. (11) t o g e t h e r  w i th  Eqs. (6) ,  (7) ,  we o b t a i n  

Umax = ' (13) 

and then  use  the  r e l a t i o n s h i p  Umax = (Omax + ( ~ / 2 ) @ m a x ) / ( l +  B/2) to c a l c u l a t e  the  upper  l i m i t  
Omax= Omax(~). The true function 0 = O(n) is located between 6hnin and Omax, i.e., Omin(n)~ 
O(q) ~Omax(n) , where the sign = refers to n = 0 and ~ + -. For B = 0 the upper and lower 
curves coincide and transform to an exact analytical solution of the problem. 

Because the "gap" between Omi n and Omax for any value of 8 (from 0 to -) proves to be 
narrow, subsequent refinement of Omin and Omax is unnecessary. 

Figure 2 shows a calculation of the lower and upper limits using Eqs. (9) and (13) for 
the case 8 = 3. Also shown is the actual temperature [4]. It is evident from the figure that 
the difference between Omi n and Omax is small, and that the two functions are located almost 
symmetrically with respect to 0 = O(n). 

If 8 < 0, then Eq. (9) gives the maximum value Umax, i.e., then 

' U m a  x = err n (14) 

To find the lower limit we must integrate the equation 

d2Umin + 2D dUmin -- O, (15) 
dn z 1 + ~Omm dn 

! 

where by Omi n we understand the solution of the equation 

Urn,. = [0~,.  + -~- (0~, .)~]/(I  + --~ - ) errs. (16) 
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Fig. i. Graphical method of determining coefficient a (B = 3): 
I) 2~/(i + 8); 2) function 2n/[l + 8@min(N)]; 3) tangent to 
curve 2, parallel to curve i. 

Fig. 2. Lower (I) and upper (3) limits for temperature field 
@ (2) for 8 = 3. 

In analogy with Eq. (I0), instead of Eq. (15) we have 

d2Umln @ (a_[ - 2~ ) dUmin 0" (17) 
d~ a 1-t-~ dn 

The inequality sign of Eq. (12) then changes its direction: 

a -]- 1 -[--------~ < 1 -~- ~Omin (n)" (18) 

In conclusion, we note that with no changes in principle this approach can be applied to 
the more general case described by Eq. (5). 
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